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ABSTRACT

A 'uinfied method of analysis for factorial arrangements in
block designs has been developed for arbitrary block designs. The
main results shown here are (1) an easy way to determine the de-
grees of freedom for treatments, (2) a systematic approach to find
a set of estimable effects, and (3) In the factorial case, a method
to determine which effects are confounded with blocks or aliased
with other effects.
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1. INTRODUCTION

This report is the fifth effort 1.2.3.4 using a unified method of analysis for factorial ar-
.oementa incorporated into block designs. Four efforts were previously published in various

J, ,rnals. 1 '2'3'4 The first; two papers' present the basic theory and give solutions for a wideS~ class of balanced (hence connected) block designs. Due to certain desirable properties associ-
ated with balanced designs, these solutions can be expressed explicitly and require no inversion

clas of aced hene coneced) loc deig s. Due taeo f cetain wa d esiralepraeties asoci
of matriceo to obtain the solutions. The third3 treats the c.se of two-way elimination of
heterogeneity. The fourth4 treats the case involving unequal number of treatments per block
but is restricted to the case of designs with one block only and to the case of complete factorialS~experiments.

This report extends the prior work by providing solutions for arbitrary block designs.
Included art nonconnected designs in general, the fractional factorial designs, case of miss-
Ing treatments in general, and unequal number of treatments per plot per each of multiple
blocks. In these cases, the nice properties of balanced designs disappear, and the solutions
to the normal equations will sometimes involve matrix inversions for the reduced solutions.
Effective use of partitioned matrices, and their generalized inverses, is made in these cases.
In many other cases the coefficient matrix of the normal equations is idempotent; then the
solution to the reduced normal equations is expressed explicitly without requiring formal

" ~matrix inversion.

The main contributions of this paper are: Theorem 1 from which the rank of the coefficient
matrix of the reduced normal equations can be determined easily (Section 3.3); a systematic
approach to finding the ectimable parameters in the non-factorial case for any block design
(Sections 3.4 and 3.5); and the extension of the results to the factorial case where the confounded
and aliased effect terms are determined in terms of the estimable parameters. (Sections 4.3
and 4.4).

There probably are no new mathematical results herein, although some of the results are
hard to find in any one place. The known results used by many authors, notably, Tocher,s

Rao,' Zelen and Goldman, 7 Graybill, 8 Kurkjian and Zelan,1.2 Kempthorne, 9 are collected
together and used to yield a reasonably efficient computer program (FORTRAN IV) to do the
analysis. The program requires for input only the observed data and the generalized incidence
matrix, L, for the design.

Those designs with especially nice properties, of course, could be solved with more ele-
gant methods." 2 Even in these cases, however, a computer program would be desirable for

1Kurkiian, B. and Zelen, M. (1962) A Calculus fer Factorial Arrangements Ann. Math. Stat. 33, 609-619.
2Kurkjian, B. and Zelen, M. (1963) Applications of the Calculus for Factorial Arrangements I. Block and Direct

Product Designs, Biometriko 50, 63-73.
3Zelen, M. and Federer, W. T. (1964): Applications of the Calculus for Factorial Arrangements II. Designs with

Two-way Elimination of Heterogeneity Ann. Math. Stat. 35, 658-672.
4 Zelen, M. and Federer, W. T. (1966): Application ef the Calculus for Factoriul Arrangements Ill. Analysis of

of Factorials with Unequal Numbers of Observations, Sankhya, (A), 27, 383-400.
5Tocher, K. D. (1952) The Design and Analysis of Block Experiments, J. Roy. Stat. Soc., Ser B, J4_ 45-91.6 Roe, C. R. (1962) A Note on a Generalized Inverse of a Matrix With Applications to Problems in Mathematical
Statistics. J. Roy Stat. Soc (B), 24, 152-158.

7Zelen, M. and Goldman, A. J. (194): Weak Generalized Inverses and Minimum Variance Linear Unbiased Estima-
tion. J. Res. Nat'l. Bur. Stds. 68B, 151-172.8Graybill, F. A. (1961) An lntr,,luction to Linear Statistical Models, Volume I, McGroy-Hill, New York.

9 Kempthorne, 0. (1952) Design and Analysis of Experiments, John Wiley and Sont, New York.
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each type of balanced design to do the unpleas.at arithmetic. However, as frequently happens
in practice, the balance of a well designed experiment is inadvertently destroyed at the field

site through loss of data, or failure to follow the test design for various reasons. in those

situations, ýhe expe-Amenter need not be concerned with the synthesis and analysis of the re-
sulting,'- a',n. The data are analyzed as taken. The computer output lists the complete
analys.o, ' variance together with the estimates of the treatment parameters, the associated
-.•xiance-, -)variance matrix, snd the aliasing and confounding whece appropriate.

Following the introduction the paper is divided in 5 parts. Section 2 contains, for complete-
ness, some mathematical tools to be used in the sequel. Section 3 gives a short review for the
analysis of biock designs to set the stage for .%e main results given in section 4. An outline
of the entire compatationW! procedure is giveh ia section 5. Section 6 gives some examples.

2. MATHEMATICAl. TOOLS

T , iS section we summarize some notation and operations which are used in the sequel.
J10. , ing apecia- matrices will be used:

column vector of dimension m, with all elements unity

J, '1, a squaro matrix of dimension m, with all e.ements unity

1 the unit matrix of dimension m

M =M I. -

0i a column vector of dimension mi with all null elements

2.1 Direct Product (DP) and Symbolic Direct Product (SDP)

Let A = (asj) and B = (brs) be rectangular matrices of dimenalons m X n and p x q,
respectively. Then the direct product (DP), or Kronecker product, of A and B will be written
A x B and is given by

a11 B 01213 "n1

a21B 2B aa.B

AxB=

I mB 9 2 B B

with dimensions mp x nq. In general, if A,, (i 1, 2, .. ., k), are m, x n, matrices, their

joint direct product, A1 x A2 x ... x Ak will have dimensions

1[1 2=

8
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For arbitrary square matrices, A, B, C, and D, the direc& product opei tion has the
following basic properties:

(Ax B) xC = Ax (B xC)

(A + B) x C =(A x C) + (B x C)I c x A = A x c = cA for an arbitrary scalar c

(AxB)' =A, xB'

(A x B)- = I1  x EC 1 providing the indicated inverses exist

(A x B) (C x D) = AC x BD provided the indicated products are conformable.

The symbolic direct product (SDP) operation will be denoted by E . Let

a•=[2i (1), ai (2) ... ai (mi)]

be row vectors for I= 1, 2, . .. ,n. Then the SDP of xp and aq is defined to be

apq (11)

apq (12)

ap (1) nq (1) ' npq (lmq)

p "q- nP (2) A q (2) flpq (21)

U np q (M q) pa (2mq

cvp Lq,,)q

The extension of the SDP to more than two vectors is straightforward. The SDP is an operation

on symbolic quantities, but not on numerical quantities.

9
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As an examDle, let m = mq = 2. Let aoq (ij) denote the effect of a two-factor interaction
term when experimental factors A- and A- are at levels I and J, respectively. Then a O) a
will be used in the sequel to order the elements of the two factor interaction as J

Ip g) flqi [(lpq (11) flpq (12) plp (21) npq (22)].

Furthermore, the SDP will be used to order the treatment-combinations in a factorial
experiment. For example, assume a two-factor experiment with factor A, at two levels 'md
factor A2 at three levels. Let ,' = (1 2) and t = (2 3) be vectors whose elements denote

the levels of the Lactors. Then the SDP

12 4
13

P1 2 ' 21

2/2

3 22

gives the ordering of the six treatment-combinations

2.2 Generalized Inverse (GI)

The generalized inverse has received much attention recently. 6. 7.10.11.12.13 It is par-

ticularly useful in solving singular linear systems of equations. The GI of an arbitrary matrix
C of dimensions m x n is denoted by C* and is the ma*xix whic-i satisfies the relations

C - C C+ C

(C4Cc)' C- c÷

(CC•)' CC.

6 Rao, C. R. (1962) A Note on a Generalited Inverse of a Matrix With Applications to Problems in Mathematical

Statistics. J. Roy Stat. Soc (B), 24j 152-158.
7 Zelen, M. and Goldman, A. J. (1964): Weak Generalized Inverses and Minimum Vorimce Linear Unbiased Esti-

mation. J. Res. Nat'l. Bur. Stds. 68B, 151-172.
1 0 Ben-Israel, A. and Wersay, S. J. (1%J), An Elimination Method for Computing the Generalized Inverse of an Ar-

bitrary Complex Matrix, Jour. Assoc. Comp. Mach. 10, 532-537.
1 1Grevili,, T. N. E. (1961) The Pseudoinverse of a Rectangular or Singular Matrix and its Application to the Solu-

tion of Systems of Linear Equations. SIAM Review, 1, 38-43.
12 penrose, R. (1955) A Generalized Inverse for Matrices. Proc. Comb. Phil. Soc. 51. 406-413.13 Searle, S. R. (1965) Matrix Algebra for the Biological Sciences, John Wiley ond Sons, New York.

10



R7-

l The reduced normal equations used here vill always be singular, and, hence, the GI will

be used to obtain their solution. In many cases, the coefficient matrix C of the normal equa-
tions is idempotent, (C = C), or quasi-idempotent, (C X= C, X a scalar). In these cases, it Is
reAdily verified that the (I3 of C is given by C÷ = /X 2. For the relatively infrequent cases
where C is Lot quasi-idempotent, the GI is computed using the method of Ben-Israel.

3. ANALYSIS OF BLOCK DESIGNS

3.1 Notation and Model

Consider a design involving a fraction or all of v treatments applied to b blocks. Let
block j contain kj treatments, j = 1, 2,..., hand lot treatment I be replicated ri , I = 1, 2,
... v, times throughout all blocks. For the classical balanced or partially balanced incom-
plete designs ki and r, are constants over all I and J. There is no such restrictiou herein.
Furthermore, to introduce unequal number of treatments per plot per block, let denote
the number of times treatment I appears in block J. Hence we will have

V

and
b

ri LE ij"

j-=l

Let Yik denote the yield of the kth replication of the ith treatment in the jth block. We will
assume the usual fixed effects model,

Yijk "+ ti +bi 15 •ijk' i a1. 2. •••.v

j 1. 2. . , 11

k 2, 2 . . .. . "ij

where ti is the flxed effect of the Ith treatment, b, the fiyed effect of the jth block, - the
general effect, and the "i ik are independent random variables. (The mixed effects model,
using the unified mett.ods herein, has been considered,14 although it has not been incorporated
in this paper.) For the sake of tests of significance it will be assumed that each ,i is dis-
tributed normally, N(O, -2). We further assume that effects ti and bl are subject to the
restraints

v b

a-I i-i

14 Kurklion, B., t1960) General Theory for Asymmetrical, Confounded, Factorial Experiments, TR-829 Harry Diamond
Labs., Washington, D.C.

: 11
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Let N = (n i be the (v x b) incidence matrix of the design where ni j 0 or 1 depending
on wheer thei treatment is absent or present in the jth block. Let L = ({..) = (n, ti,
denote the generalized incidence matrix. Then the least squares estimates of the treatment
effects can be obtained in the usual way, by minimizing

V b ti)J2
S . 1ffi ij (Yijk- 9 ti - bj)

J-I -1

with respect to t., b. and u. Eliminating b. and az from the resulting normal equations, one
obtains the reduced normal equations, C 2, Q, where

Q T - L-ICB. C= R - L-IL

)n..
B' =(BI B2 . . .B b), Bj = T =lnij Yijk (2)

b

R =diag (r, r 2  rv), ri tij

V

K diag (k1 k2  kb), k

The elements of C can be expressed as

b

Cdii ri 'k_., i 1, 2, v

(3)
b

t ;E ij t /ki. i, s= 1, 2." v, i d s

As will be shown in section 3.5 the solution to the reduced normal equations, Ct = Q, is given
by

C, (4) ]

12
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where C" is the generalized inverse of C. It can easily be shown, using the expressions (3),
that the rows and columns of C sum to zero. Hence the rank of C is always 1ess than v. As
will be shown in section 3.3., the concept of connectedness of the design will be useful in de-
termining the rank of C, and, equivalently, the degrees of freedom associated with the treat-
ment sums of squares.

Furthermore it is readily verified that Var [Q] = C a 2 so that the variance-covariance
matrix for the treatment effects is given by

Var (t) =C' Var (Q] C" =C* A2

The sums of squares due to treatments can be expressed as

SS (t) =' Q= t'C t = (t ) (V (t)J () a2.

Letting Y = (ni j Yi jk ) be the vector of observations, w the total number of observations,
i.e.,

v b

and G the sum of all the observations, i.e.,

v b 'l

the analysis of variance table can be expresseds. 9 as

Source of Variation Sums of Squares Degrees of Freedom

Treatments (adjusted for blccks) Rank C

Blocks (unadjusted) B'K 1 B - G 2/w b - 1

Error Y'Y - t'Q - B-K" B w - Rank C - b

Total y'Y-G 2 /w w- 1

3.2 Connected Designs and the Rank of C

A connected design can be defined as follows. Two blocks, b, and bj , are said to be
connected if they contain some treatment in common. A third block, b. , 'is said to be

5Tocher, K. D. (1952) The Design and Analysis of Block Experiments, J. Roy. Stat. Soc., Ser B, 14, 45-91. A
9Kempthorne, 0. (1952) Design and Analysis of Experiments, John Wiley and Sons, New York.

13



connected to both of these blocks, if it has at least one treatment in common with either of the
blocks b. or b All blocks connected in such a manner are said to form a set of connected
blocks. If all blocks in a given design, involving all v treatments, are connected through such
a chiin of common treatments, the design is said to be connected and to consist of one set of
connected blocks, S = (b1, b2, ... bb) where elements of S denote the block labels.

For connected designs with no missing treatments it is well knowns that the rank of C is
v - 1. That is, for connected designs it is readily shown that one can construct (v - 1) linearly
independent relationships between the treatment parameters. Hence the rank of C is v - 1.
Conjequently, the one constraint

V

.ti = 0,
ij1

inherent in the model, is all that is required to get a unique solution to the reduced normal
equations Cd = Q.

Using the calculus for factorial arrangements, the analysis of balanced (hence connected)
incomplete block designs is particularly elegant and simple 1. 2. The main purpose of this paper
is to extend the basic results of Kurkjian and Zelen to the case of disconnected designs.

3.3 Disconnected Designs, Missing Treatments, and the Rank of C

When all the blocks are not connected via a chain of common treatments, the design is
said to be disconnecied. In this case there will be more than one set of connected blocks. For
example, the design with incidence matrix

, I1 0 1

N= 01 0

0 0 1

is disconnected since block 2 has no treatment in common with blocks 1 and 3. Since blocks
1 and 3 are connected via treatment 1, the design N is said to decompose into two sets of con-
nected blocks: S, = (b1 , b3 ) and S2 = (b2).

In general, the determination of the number of sets, z1 , of connected blocks is a trivial
task, obtained by inspection of the incidence matrix of the design.

As the following theorem shows, the number of distinct sets of connected blocks, z , and
the number of missing treatments, z2 , in the design will determine the rank of the coefihcient

1Kurkjian, B. and Zelen, M. (1962) A Calculus for Factorial Arrangements Ann. Math. Stat. 33, 609-619.
2Kurkjicn, B. and Zelen, M. (1963) Applications of the Calculus for Factorial Arrangements I. Block and Direct

Product Designs, Biometrika 50, 63-73.
5 Tocher, K. D. (1952) The Design and Analysis of Block Experiments, J. Roy. Stat. Soc., Set B, 14, 45-91.

14



matrix C of the reduced normal equations and, hence, the total number of constraints required
to achieve a unique solution to these equations. Moreover, rank C also yields the degrees of
freedom associated with the treatment sums of squares in the analysis of variance table.

Theorem 1. For any block design, the rank of the v x v coefficient matrix C of the re-
duced normal equations C Q, isv-z, -72, where v is the total number of treatments in
the experiment, z, is the number of sets of connected blocks, and z 2 is the number of treat-
ments fcr which no observations were taken during the experiment.

Proof: Without loss of generality, one may assume that the first q, treatments are as-
sociated with the first set of p I connected blocks, the second q2 treatments with the secondset of P2 connected blocks, and the penultimate qz, treatments with the zt, set of p z,

connected blocks. Moreover, let the last 7 treatments be those missing in the experiment.
This assignment could be achieved through appropriate relabeling of treatments and blocks.
With such a rearrangement, it follows directly from the definition of connected blocks, that
the generalized incidence matrix L can be written in partitioned form as:

LI (qK x pl) 0 (q, x P2) .. . 0 (ql × p)

0 (q2 xPl) L2( p-P?) (q2PN

L=

0 (qz x p,) O(q, ×Xp2) . " Lz (qz2 × P,

L0 (z2x Pl) 0 (z2 x P 2 ) 0 (Z,1 pX1 )

where the dimensions of each of the elame. of L is given in the parenthesis. Clearly then,

V qj + 22

and the kv x v) coefficient matrix, C = R - LK- L', can be written in partitioned form as the
diagonal matrix:

C= ding (C1 (ql x q,) C2 (q 2  q C2 (q2) K 0 (22 z2)]

In accordance with section 3.2, the rank of each Ck, k 1, 2, ... , zl, is (qk - 1), since each
partition is associated with a set of connected blocks. Hence, it follows that

Rank C L (qk- 1) v- z2- z1,S~k-i

which completes the proof.

15
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Since v, z , and z are obtained almost instantly by inspection of the incidence matrix of
any arbitrary block design, the numbbr of estimable treatment parameters and, hence, the de-
grees of freedom associated with the treatment sums of squares is reduced to the trivial cal-
culation v - z I - z2 .

3.4 Choice of Constraint Matrix

To achieve a unique solution to the normal equations, Ct = Q, where rank C = v - z1 -

we will need (z1 + z 2) additional independent relationships between the treatment effects. In
this paper we obtain these relationships by adopting the convention that the sum of the treat-
ment effects associated with each set of connected blocks is zero, i.e., each treatment param-
eter is expressed about the mean of the effects associated with that particular set of connected
blocks. Moreover, for each missing treatment in the design, the corresponding treatment ef-
fect will be assumed expressed about its own true value, hence, assigned the value zero.

This convention is quite commonly used by other investigators although it may not be ex-
plicitly stated in their published works.

With the treatment labeling as given in theorem 1, this convention can be expressed mathe-
matically as the solution to U't= 0 where U'is the [(z, + z2) x v] matrix

U1 diag ('q l' ... ', I2(5)

It follows immediately from the proof of theorem 1 and from the fact that the rows and columns
"of C sum to zero, that U' C = 0. Moreover, it is obvious that

31

det (U' U) i qi

and, hance, is not zero. In general, U' can be written or inspection of L.

3.5 Estimation for Block Designs

For the constraint matrix U, with properties U 'C = 0 and det (Tj'U) W 0, the solutions

to the augmented normal equations

(6)(:. U) (:>)(QO
can be shown to be 7

7ZeIen, M. and Goldman, A. J. (1964): Weak Guneralized Inverses and Minimum Variance Linear Unbiased Estima.
tion. J. Res. Nat'l. But. Stds. 68B, 151-172.

16
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t C+ Q, (7)

where C+ is the GI of C. Fortunately, for many designs, C has the property that C2 =\ C
where X is a scalar constant. In such cases the GI of C is readily verified to be C+ = CA 2 .
The digital program developed for this analysiz checks the coefficient matrix C for this
idempotency property at the outset. When C is not Idempotent, then the GI is computed using
the method of Ben-Israel and Wersay. 1 0

The results of section 3 are sufficient for the analysis of experiments Involving simple
treatments applied to any arbitrary block design, balanced, connected, or not. The next sec-
tion extends the results to the case of experiments involving factorial treatment-combinations
applied to general block designs.

4. ANALYSIS OF FACTORIAL EXPERIMENTS IN BLOCK DESIGNS

4.1 Notation and Model

Consider now a factorial experiment involving n experimental factors, A, where factorA, appears at m, levels, s = 1, 2, . . .n. A particular selection of levels fo~r each factor,

i = (it 12 ... in), will be termed the Ith treatment-combination, i = 1, 2,..., v, where

in.

V = T1m.

Let 0, = (1, 2, .. ., nm,) be a vector whose elements denote the levels at which factor A, ap-
pears. Then the SDP, 9 e•, 2 0 " , a column vector of dimension v, will be used to
label and order the v different treatment-combinations. For example for two factors each at

two levels, we have the vector of four treatment-combinations given by

[121
01 002 = •

.21

Hence treatment 1 is composed of the first levels of each of the two factors Al and A2, etc.
Treatment i is the element Wn the ith row of 01 1( , t, 1, 2, 3, 4.

These treatments then are applied to any block design to estimate the effects of the ex-
perimental factors acting alone or in interaction with other factors. For this purpose let
a; = (a. (is)) denote a row vector of length m. whose general element a5 (i,) repreclents the

* effect of the experimental factor A at level is. Moreover, let al.(.l, is) denote the effect of
Sthe two factor interaction associated with factors Ar and A& at levels ir and , respectively.

10OBenl-sroe[, A. and Wersoy, S. J. (1963), An Elimination Method for Computing the Generalized Inverse of on Arbi-
•, trary Complex Matrix, Jour. Assoc. Comp. Mach. 10, 532-537.
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Then the vector

[nr E) a sJ ' [ar s 0 11), ar s (12), .. a rs 0 m), ar, (2 1),. . ar , (2m),. .

ars (mr 1),.. ars (mr ms)]

displays the mrms two-factor interaction parameters associated with the experimental
factors Ar and As. 1 ,2 Likewise, [ai o a1 i ... e ai.] is a row vector displaying the

Li 2 1
P

p

]-F mi

j-1

interaction parameters associated with the p factor interaction A. A. ... ASP Clearly,

I1Ithere wifllbe 2'-1 vectors containing i 1

STY(1 + mi) -
j.1

-i-

such parameters in all. It is quite common in practice is to express the treatment effects,
ti, in terms of these main effect and interaction parameters as

n

ti a (ii)+ 2 . .s 8 s(r) + + *+ a12 .. (i11 ~21 ii0

sm s < r.n (8)

i 1,,2 ...... v

These relations can be written' in matrix form as

t (%{a ((a,)) 8, (02))* an. ((an)) (9,
k- I al÷ .*••an= k

1Kurkjian, B. and Zelen, M. (1962) A Calculus for Factorial Arrangements Ann. Math. Stat. 33, 609-619.
2Kurkjian, B. And Zelen, M. (1963) Applications of the Calculus for Factorial Arrangement I-. Block and Direct

Product Designs, Biometrika 50, 63-73.
15 Zelen, M. (1958) The Use of-Group Divisible Designs for Confounded Asymmetrical Factorial Arrangements, Ann

Math Stat. 29. 22.40.
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where

fai f ai

ai ((ai)) =

1i if ai=O

.ai Eaif ai=a.=1

Sai ((ad)) a, ((a i) = i x 1j i f ai = 1, a j = 0

Sa aj if a. =0, a. = 1

I, X l i f a. =a= 0.

In the starred operations in eq. (9) the products a, x a and ai 0 1 are not defined and arc
termed Inadmissible products.

When admissible direct and symbolic direct products both appear in eq. (9), we adopt the
convention that DPts are formed first and followed by the SDP's. For example if n 3,
MI= M2 = m 3 = 2, . a 3  a1, 2 = 0, we have

a, ((°-))*a2 ((a 2))*a 3 ((a3)) (alx 12) 0a3

aa ((1) '(1) Il() ( 3 (2)
(2) ý (2) 21 (2) a 25

a• (2)

"13 (11)

a13 (12)

a13 (11)

a13 (12)

a 13(21)

a13 (22)

a 13 (21)

| 
La13 (22)

It Is easy to verify that this operation Is associative. These interaction parameters are no'.
linearly independent and are taken to satisfy the linear relationship that, for any set of mrin
effect or interaction terms, the sum over the levels of any single factor Is zero. In matrix
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form these constraints can be written'

l;a, -0 s 1, 2 .. . n

lx Is Os r, s 1, 2..... n

far as] 
A

Ir X 1., Or r < s

(10)
IlX12 " "x 2n /0x3x X ""On1

lI x 12x . x In 01x 03 x . x On

(al(a 2D.a.. C)a]=

Il 1 x. .X n'01x0.. / O-

It is easy to show that for connected designs with no missing treatments (z 1 = 1, z2 = 0) there
will result 4

n nt

smI r < s i~

linearly independent interaction parameters. Also, it is well known (section 4.2) that these
(v-i) linearly independent parameters are expressable as linear combinations of the elements
of i which are obtained from the reduced normal equations Cdt = Q. For the case where
Z I z 2 > 1, the further constraints U't = 0 on the t parameters will also have to be imposed
on the (v-i) interaction parameters.

1Kurkjian, B. and Zelen, M. (1962) A Calculus for Factorial Arrangements Ann. Math. Stat. 33, 609-619.
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4.2 Estimaticn for the Factorial Case for Connected Designs
and No Missing Treatments

1f 2
This case has been treated fully using the basic method of this paper. The main re-

sults are restated here for completeness and to set the stage for some results in section 4.3
below. Let X = (x x 2 .I xn) be a vector representing an interaction term where the ele-
ment xi Is defined as

xi = 1 if factor Ai Is present in the interaction X

S1, 2, . .(
xi = 0 if factor Ai is absent in the interaction,

Clearly, there will be 2n - 1 such vectors. The vector X = (0... 010 ... 0) with a one in the
r h position and all other elements zero denotes the main effect of factor A, x= (0... 010 ... .10

0) with elements in the rth and sth positions equal to one and all others zero, denotes the
two-factor interaction ArA , etc., X = (11 ... 1) with all elements unity denoting the n-factor
interaction AA 2 ... An. For the purposes of this paper, the vectors X,, I = 1, 2, . ., 2
will be ordered as follows: All vectors denoting main effect terms first, those denoting two-
factor interactions second, etc., with the n-factor interaction term last. Within each of these
groups, (i.e., interaction terms) the vectors are ordered lexicographically. For example, if

n = 3, we will have 2 - 1 = 7 vectors in the following order: (100), (010), (001), (110), (101),
(011), (111).

Now let

i=IX X
a(X) a~ I o a 2 xn x1 

Ip(2

X.
denote the effect of a particular p-factor interaction term where a.' = a. if xi =1 and where

i i
ai is suppressed on the right-hand-side of eq. (12) If xi = 0.

As shown by Kurkjian and Zelen,' the minimum variance unbiased estimator for a(X) is
given by

9 (X) - M (X) t/v M (X) C* Q/v (13)

where

M(X) ;X2. .XM1

Mi - Im i Ji- i i f xi 1

i f X
S:1[ if xi --

1Kurkiian, B. and Zelen, M. (1962) A Calculus for Factorial Arrangements Ann. Math. Stat. 33, 609-619.
r 2Kurkjian, B. and Zelan, M. (1963) Applications of the Calculus for Factorial Arrangements I•. Block and Diruct

Product Designs, Biometriko 50, 63-73.

21



Moreover, it follows directly that 4

Var [g(X)] =M (X) M (X)', 2/v 2 : (X) 02 , wher(
(.14)

Y-(X) - M (X) C' M (X)'/v 2

Likewise, for different Interaction terms Xi and Xj

Cov (A (XI), A (Xj)] = M (Xi) C' M (X,;)' a2 v2 . (15)

Using a resuit giveu by Rao6 and Zelen and Goldmau47 the sums of squares associated
with the interaction term X is givea by

SS (a (X)) = () (Var A (X)]+ l (X) a2 g, (X) y (X)+ a (X). (16)

Under the null hypothesis of no interaction effect, SS(a(X)) is distributed as a chi-square vari-
ate with degrees of freedom equal to the rank of Var [i (X)].

If the design is orthogonal (iLe., Coy [a(Xi ), a(X.)] = 0 for all I, j, I # j), then it is known
that

2n- I

SS(t)- t'Q=Z SS (a(X 1 )]. (17)

j11

If the design .s not orthogonal then the SS(a(Xi)) are not additive. However, as shown by
GraybillS sazh quadratic form, SS(a(Xi )), is statistically independent of the error sum of
squares. e.enne, tests of significance based on the F distribution are still valid.

The analysis of variance table is given by

6 Ro1. C, R. (1962) A Notu on a Generalized Inverse of a Matrix With Applicatiors to Problems in Mothamaticol
Statirti:.s. J. Roy Stat. Soc (B),3_. 152.158.7ZelIn, M. ad Goldmon, A. J. (1964) Weak Generalized lhvwrsos and Minimum Varienco Linear Unbiased Estima-
tion. J. Res. Hat'l. Bur. Stds. 68B, 151-172.

8Groybill. F. A. (1961) An Introduction to Linear Statistical A.udels Volume 1, McGray-Hill, Now Yo'k.
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Source of Variation Sams of Squares Degrees of Freedom

i SS(a(X1 )) Rank 5:(X1 )
SS(a(X2 )) Rank

x2"- SS(aX2,_ Rank 7(X2n_ )
Blocks (unadjusted) BK-IB - G2/w b - 1

Error YY-tQ- B'K1'B w- Rank C- b

Total Y'Y- G2 /w w- 1

4.3 Estimation for the Factorial Case for Disconnected DIsigs with
Missing Treatments (z I + z, > 1)

As Indieated in section 3.3, for the general case when the design is not connected or only
a fraction of the treatment-combinations are tested, the rank of the coefficient matrix, C, of
the reduced normal equations is v-zl -z 2. In this case one must select a particular set of
v-z 1 z2 paramettrs for which a unique solution to the normal equationr will exist. In this
paper the selection Is made as follows. First eliminate those parameters that are dependent
as a consequence of the basic constraints (eq. 10). This is done by eliminating all but the
(mi - 1) lowest level parameters of the main effect vectors, a(X i), associated with the ex-
perimeiatal factors Ai, I = 1, 2, .. ., n; all but the (mi - 1) (m j - 1) lowest level parameters
of the two-factor interaction vectors associated with experimental factors A. Aj,...; and all
but the

-7-(mi - 1)

lowest level parameters belonging to the n-factor interacticn A, A2 ... A,. Hence, all but
(v - 1) parameters are eliminated. Second, (z, + z 2 - 1) of these v - 1 parameters must be
eliminated because they can be expressed as linear functions of the remaining (v - z, - z 2 )
parameters through the relationships resulting from the constraint equation Tf t = 0 of section
3.4. One chooses the (z, + z 2 - 1) parameters to be those which are unestimable (as defined
in section 4.3 below) or those associated with higher order interaction terms.

To clarify this parameter selection scheme, and to set the stage for an efficient compu-
tational algorithm for the estimation problem, it is convenient !o Introduce the fellowing
quantities.

Let a denote the universal vector, of dimension

n

f - -1 + M) -12
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containing all the main and interaction effect parameters,

a' = 'a' (XI) a'(X2 ) .. . a (X2.)], (18)

where tha interaction vectors, X1 , are ordcred as indicated in section 4.2. Similarly, let MV
of dimension

n

7 f(l +mi) - Xv,

be a matrix made up of the corresponding M(Xi) matrices, i.e.

[M = N ,' (X ) M'(X 2 ) M. ' (X 2. )].

Nov let i denote the vector of v - 1 elements remaining after elimination of the parameters
that are dependent because of the basic constraints of eq. (10), and let Fd be the matrix con-
sisting of the corresponding rows of M. Thus, we have for reference

-5' 1'[ (XI) N'(X2) .5. •'X nx.•

and

= Ii' (X) M'(X 2 ) M,' (X _)n .

Leta = (a° (X-) a' (X.) . .a 'a (X. )] denote the vector containing a total of v - z1 -
parameters that remain ifter the further elimination of parameters in W, through application
of the c(,nstraint equation

Ui't =U' k al * aL2*. • an 0 . 19)

s" d1 .a

Removing the cort, spondlng rows of M there results

[ ' (,,,) 2)...M' (x,)]

The vector a now contains the v - - z 2 linearly independent parameters which permit un-
biased minimum variance estimation and, hence, are termed estimable parameters in the
standard sense.8 In this paper elements of Z will be termed independent parameters. Elements

8 Groybill, F. A. (1961) An Introduction to Linear Statistic-l Models, Volume I, McGray-Hill, New York.
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of a that do not appear in W will be termed dependent parameters. The interaction
3 = 1, 2, . •., s, is represented in= If at least one element of a(Xi. ) is a mamber of .'Suc•l
interactions will be termed estimab!6 or unestimAble in the sense 'described in the next sec-
tion. The original singulai system of normal equations has now been reduced to a non-singu-
lar system of rank C =v - z - z 2 and, hence, yields the following stanrArd quantitleE as
solutions.

). The analysis of variance table is given by:

SSource of Variation Sums of Squares Degrees of Freedom

""X -S a(Xi1 )) xk) (XV) -1
SiSS(a(X )) Rank x (X.

(Xi2 2 "

W. r.M( i) C Ma(

Blo cks(unadjusted) -K NCG 2
)w b-i

Error Y'Y - t•- BiK-B w -Rank C- b

STotal Y Y - G(X/w w- 1

S~4.4 Unestlmable, Aliased, and Confound•ed InteractionsThe theory of confouadri and atasing is easy to apply for the case of 2b designs. How-

ever for general designs the determ amon of such effects quite difficult. The literature in

many cases identifies the ablased and confounded interactions without giving the mathematicalSfoundation for the determination. In this paper the definition o! such effects is based on the

l inalindependent, hceestimable, parameters in th ouinto th omlequations, i.e.

Sthe elements of a in sectiosi 4.3

SConside anefRaetra(a)ascae wt h/trc n k X(, ) ,2 .. n-

' The following definftions will bd. used to characterize Its ectnsabollty.

Consider an effect vectorapassociated with the interactionX,,, S=1, 2, .2hP -1.
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Definition 1. Estimable and Unestimable Interactions

If all elements of a(X ) belonging to i are also in , the interaction X is termed estim-
able. If some (or all) of the elements of a(XA,) do not belong to a, then the interaction X, is
said to be partially (or totally) unestimable. Some unestimable interactions can further be
classified as aliased or confounded.

Definition 2. Aliased Interactions

An interaction Xo will be termed an alias of a lower order, at least partially estimable
interaction X,, if at least one dependent effect parameter associated with X, is linearly de-
pendent on at least one independent effect parameter associated with X,. It should be noted
that this definition allows partially unestimable interactions to be allased with more than one

lower order interaction.

Definition 3. Confounded Interactions

If for the interaction X

(I) the effectvector a(X,) contains only dependent parameters, i.e., has no elements in 9, and

(ii) each of these dependent parameters is not linearly related to any of the independent
elements in a, and

(Wii) b - 1,

then X, is said to be completely confounded with blocks. If b =1, then X6 is said to be com-
pletely unestimable.

Definition 4. Partially Confounded (Unestimable) Interactions

If the effect vector i(X,) associated with the interaction X contains dependent elements
that are linearly related only to its own independent elements, then X is said to be partially
confoundod with blocks, provided b > 1. If b = 1, X is said to be partially unestimable.

5. COMPUTATIONAL PROCEDURE

The computational procedure can be summarized as follows:

Step 1. Given the generalized incidence matrix L and the vector of observations, Y = (n ij Yi jk)
compute C and Q (cf. section 3.1).

Step 2. Compute the generalized inverse C* and obtain the solution to the reduced normal equa-
tions, i.e. i = CQ' (cf. section 3.5).

Step 3. By inspection of L determine z, and z 2 and compute rank C = v - z, - z2 (cf. section
3.3).

Step 4. Compute the analysis of variance table as indicated in seution 3.1.

For factorial experiments, the following additional computations are made. The treatment
combinations and the rows of L must be labeled and ordered in accordance with section 4.1.
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Step 5. Compute the main and interactzn effect vectors A(X) = M(X ) /v and form ý(X1 ) and
=(Xi=1, 2, 2n 1 (cf. section 4.2). If rank C =v - 3, set A(X) = (Xi ) and M(Xi =

M(Xi and proceed to step 9.

Step 6. Construct, by inspection (cf. section 3.4) the constraint matrix U', of dimension
(z1 + z2) x v, relate the interaction parameters to the treatment-combination parameters (cf.
eq. (9)), and determine the constraints on the interaction parameters due to the application of
U't=0.

Step 7. Form a(Xi) by eliminating from A(X1 ), i = 1, 2,. .. , 2P - 1, those interaction param-
eters equal to zero or those of highest order in the constraints determined in step 6. Similarly,
form M(X1 ) by eliminating the corresponding rows of each M(X.).

Step 8. Determine the aliased or confounded effects, if any, in accordance with definitions in
section 4.4.

Step 9. Compute the sums of squares and degrees of freedom for those interaction terms which
have at least one parameter in W as indicated in section 4.3. The block, error, and total sums
of squares and degrees of freedom are given in the analysis of variance table of section 4.3. If
the design is orthogonal,

/ s

SS(a Xi)) SS (t) '.

6. FXAMPLES

In this section, we give an arbitrary example to illustrate the notation and computational
procedure throughout. Then we outline solutions, using the methods of this paper, for two
examples published by other Investigations. 16. 1

Consider a two-factor experiment with factor A, appearing at m, = 3 levels and factor
A2 at m 2  2 levels. In accordance with section 4.1, the treatment combinations are labeled

Treatment Treatment
Combination Label

I11 1

'12 2

(i\ 21 3
2 2 22 4

331 5
32 6

16 Davies, 0. L. (1967) Design and Analysis of Industrial Experiments, Hafner Publishing Co., New York.
17 Zel1n, M. (1964) Applications of the Calculus for Factorial Arrangements If: Unequal Numbers in the Analysis

of Variance, MRC Tech. Summary Report 411, U. S. Army Moth Res. Center, Univ. of Wisc.
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Suppose the original test design was, inadvertently, not executed as planned, and five of the
v = 6 treatments were applied to b = 3 blocks with generalized incidence matrix,

2 11 0

1 0 0
L= 1 0
L o 3 0
0 o 1

S~What effects can now be estimated, given this poorly executed design, and with what efficiency?
•: ~From this incidence mratrix, one determines by inspection that R = ding (2 1 1 3 1 0), K=
S~diag (3 4 1), the number of sets of connected blocks is z, = 3 and the number of missing
: ~treatments is Z2 = 1. Hence by Theorem 1, the rank of the coefficient matrix C, winl be

v - zi - z2 = 2. Computing C = R- LK' L 1, one gets after reduction

2/3 •" 02 02\

C = 2 3/;2 0 M2 = 2 12 - J2and 02 are square (21)
0 0 0 matrices oforder 2.

0 0 0

Since C is a diagonal matrix with quasi-idempotent ulements along the diagonal, the aI is
computed directly as

3,18 M2 02 02

20 1 /3 M2 02
C, (22)

0 0 0

'0 0 0

;,l

Suppose we are given the vector of responses (cf. section 3.1)

Y'= (YIII Y112 Y211 Y321 Y421 Y422 Y423 Y531)"

Then the treatment and block totals are given by

28
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T= Y111 + Y12B 1 B Y1 12 + Y211

T2 = Y211 B2 = Y3 21 + Y421 + Y422 +Y423

T3 = Y321 B3  Y531 (23)

YT4 = Y42 1 tY422 Y423

S"TS = Y531

T6 =0

Then the vector of adjusted treatment toUals Q is given by

- 2/3 B1  i/3 (yl 11 + Y112 2 Y210

T2 - 1 '3B2  1/3 (2 Y21 1 - Y112 - Y111)
T3 - 1/4 1/4 (3 Y32 1 - Y4 21 - Y4 22 - Y4 23)

Q=T-LIC1 B= _ I -24

T4-3/4 1 1/4 (Y42 1 + Y42+ -43 3Y 321)

TS -B3  0

0] 0

The minimum variance unbiased e-timate is then given by

1/4 (yll, + Y11l2 -2 Y2 2 ))

-1'4 (yl 11 + Y112 -2 21

S1/6 (3 Y'321 - -41Y2 - (25))

- 1/6 (3 y3 2 1 - -41Y2 - Y4 2 3 )

0

I o

The estimation of the main effect and interaction terms follows the discussion of section 4.2.
The 2 1 = 3 effect terms are ordered lexicographica-y as

X,= (10): main effect of factor A,

X2  (01): main effectof factor A,

S3 = (11): two factor interuction AA 2
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In accordance with eq. (13), the minimum variance unbiased estimate for each vector Xi is
given by

a 1x) M X) M (xC+

V V

For X, = (10), one gets

2 2 1-1-1 i1
3(Xi) A1 (2]) [M3x U) :1/6 1 1 2 2 1 1

t(3). 1 1 1 1 2 2

(26)

F +2 t 0
t- t2 +2t 3 -4 2t 4 tS-t 6

L: ti - 2- t3- t4+ 2 t5  ~
It will be shown below that the main effect of factor A I is totally confounded with blocks-
hence, this null result for &(X ). For X2 = (01), we get

a2(1) I z1L 1 1- 1-1

(27)

1/2 (Y1j, + Y112- 2 Y22 1) + 1/3 (3 Y3 21 -Y42 Y422 - Y423

Finally, for x3  (11), we get utilizing the cozstraint eq. (10)

A12(11) 2 -2 -1 1 -1 1

i812(11) -2 2 1 -1 1 -I

a 12 (21) -1 1 2 -22 I (

- N1 2 (21) 1 -1 -2 2 1-1

- a12 (11) - a12 (21) - 1 1 - 1 1 2 - 2

+ a12 (11) + a 12 (21) 1 1 1 - 1 -2 2
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It is readily verified that

ad 12 (II) (Y1 1 1  2 - 2 Y2 2 1 ) 1/3 (3 Y321 -Y421 -Y422 - Y423)and

a 12 (21) - 1/2 (Y11 *Y1 - 2 Y2 2 1 ) + 2/3 (3 y321 - - - Y4 2 3 )"

Hence the v - 1 5 elements of the aR() matrix of section 4.3 are given by

"M(X) a1 (1) a1 (2) a 2 (1) a 12 (11) a 12 (21)), (29)

with minimum variance unbiased estimates as given above. The corresponding Md(X) matrix is
given by (cf. section 4.3)

2 2-1-1 - 1-1 (XI

1- -1 2 2 -1 -1

M(X) 1 - 1 1 -1 1-1 .M(X 2 ) (30)

2 -2 1 1- 2 1

-1 1 2-2- 1 I [M (X3j

Now, since rank C (v-z - z 2 = 2) < (v - 1 5), there exist zI + z2 - 1 =3 additional re-
lationships among the elements in a(X) that are determined from constraint equation U' t 0. *

In accordance with section 3.4, the constraint matrix U' is given by

"11 00 O00

00 1I 00

U' : (31)
00 00 I0

00 00 01

Using equation (9) and (10) we can write the vector of treatment effects in terms of the treat-
A ment combination parameters as
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'- -,- - °, •, ••n -°,c,

t2 a1 (2) a2 (1) + 812 (11)

t3 a, (2) a 2 (1) -a 12 (21)+ + (32)
St4 a, (2) -a2 (I) [ "12 (21)

ts a ()- a, (2) 82 (1) 8- 12 (11) - a12 (21)

L a1 t (1•a-, a (2)_ J- a 2 (1) [+ a2 (1) + 812 (21)

We get from U't = 0 after reduction

a (1)= a, (2) 0

(33)
a12(21)= a2 (1) - a 12 (11)

Hence, the v - z- Z2= 2 estimable parameters that make up the a (X) matrix are

a, (X) = (a2 (1) a12 (11)]. (34)

The minimum variance estimates for the elements of 5(X) are given in eq. (27) and (28). Re-
taining the rows of M(X) associated with the two elements of A(X) there results

-1 -11X2

M• Mx (35)

2 -1 1 (1 3

The allasing and confounding is determined from eq. (33). Using definition 3, section 4.4, and
the first equation of (33), the main effect of factor A, is found to be completely confounded with
blocks. The second relation in eq. (33) reveals through definition 2 of section 4.4 that the two
factor interaction A, A 2 is aliased with the main effect of factor A2 as well as with itself.

The variance-covarlance matrix for the independent estimable parameters is given by eq.

(20).r1
() M X Var Ea (X2) Cov [a (X2)' 7(X 3 )]

V. M (X)o C. (X),)LI

[17 si '36)

36 5 2
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Using eq. (20) and (36)

(X2) r- Var a (X2) 21617

(37)

=Vnr(X3 ) 22

Using eq. (34), (20) and (37), the effect sums of squares are now computed as

S= 216 -2
SS (a (X2)) = (X2) t(X2)] 5 (X2) - a2

(38)
= - ~ 108 -~(a (X3)) a(X3) (X3)] a (X3) = :Fa~

where a 2 (1) and ai 2 (11) are evaluated in eq. (27) and (28), respectively.

We note in eq. (36) that the covarlance between the effect terms A1 and A1A2 is not zero.
Therefore, the design is not orthogonal, and the sums of squares in eq. (38) cannot be expected

: • to sum to the sums of squares for treatments, !;'Q. Finally, from section 4.3, the analysis of
variance table is evaluated as

Source Sums of Squares Md.

216 2
X2 : maln effect of A2  SS(a(X2 )) = -[- [ a 2 (1)]2 rank (X2 )=1

1082X3: interaction A, A2  SS(a(X3 )) = 1a1208 1112 rank 2 (X3) = 1

Blocks B'K- B b - 1 = 2

Error Y'Y- t'Q- B'K-l B w-rank C- b =3

Total Y'Y - G2/w 7

The following two examples have been extracted from Davies 1 6 and Zelen.1 7 The solutions

are given in abbreviated form somewhat in the form of the output of the computer program
available for this analysis. Hopefully, the detailed solution for the prior example will be suf-
ficient to make clear the brief annotations to these examples.

They are included here to facilitate the relating and contrasting of the solutions using the
methods of this paper to those using other possible techniques.

16Davies, 0. L. (1967) Design and Analysis of Industrial Experiments, Hafner Publishing Co., Now York, 466.
17Zelen, M. (1964) Applications of the Calculus for Factorial Arrangements Ih: Unequal Numbers in the

Analysis of Variance, MRC Tech. Summary Repi rt 411, U.S. Army Math. Res. Center, Univ. of Wisc.
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Example 2: One-half Fraction of 2s Design, Davies 16

Number of Factors (n) = 5 Number of treatments (v) = 32
Factor (A, )/Lovels (m,) Number of Blocks (b) = 4

A 1  2
A 2  2

A 4 2
A 5 2

Treatmentt Treatment Combination Generalized Vector of
Label (i1 ,i 2,1$,1i4,s) Incidence Matrix (L*)' Observations (Y)

2 11112 0 0 0 1 y2.4. = 775
3 11121 1 0 0 0 Y3y.I,. =819
5 11211 0 0 1 0] YS. 3. 1= 593

8 11222 0 1 0 0 = 8789 12111 0 1 0 0! Y9.._. I= 756

122212 0 0 1 0 Y12.3. = 745
14 12212 1 0 0 0 Y 4.1. = 785
15 12221 0 0 0 1 YS. 4 .I = 851
17 21111 1 0 0 0 y 1 7.. 1  =625 ;
20 21122 0 0 0 1 Y2 0 .4. = 735
22 21212 0 1 0 0 Y22.2. = 625

23 21221 0 0 1 0 Y23 3 1 =6,6
26 22112 0 0 1 0 1 y26. 3, = 666

27 22121 0 1 0 0 Y27 , . = 841
29 22211 0 0 0 1 Y2 .4. 1 =628
32 222222 1 0 0 0 Y3 2.1, = 732II

R* 1,K6t ;= 414 ; z 1=4;z 2 =16
Treatments labeled, 1,4,6,7,10,11,13,16,18,19,21,24,25,28,30, and 31 are missing from the

experiment.

L* = L with rows corresponding to missing treatments deleted.

R* = R with rows and columns corresponding to missing treatments deleted.

"C*=R*- L*K" L'

3 14 - (12 - .J2 ) " (12 - J2) 12 (12 - J2) ("2 - J2) - 12

2(-2J.T2) (12- 12) 314 (21 2) T 12 12 ' (12-.12)4" 12 X (12 J 2) (12 - .J2) 12 31 4 -(12 - J12) ' (J2 -J2)

(12 - : 2) 12 12 X (12 J 2) -- (2- 2) - (12 -J.2) 3 14
C* is idempotnnt; C*' C*

Q,= {T.-L.K- Bl' =-1[111,315,-288,412,-76,320,179,415,-461,-49,-600,-36,4,264,-477,-33]

j* = Cý* Q* = Q*

Rank C = v - z, - Z2 = 12= degrees of freedom for treatments

SS(t) = t* = 96951.5 -' Q = treatment sums of sqaures

Note: 1. The starred vectors (matrices) are the unstarred counterparts with rows (rows and columns)
associatAd with missing treatments deleted. The deleted rows (rows and columns) contain
zero elements only.

2. Subscripts on partitions of C* denote the dimensions of the indicated square matrices.

1 6 Davies, 0. L. (1967 Design and Analysis of Industrial Experimenis, Hafner Publishing Co., New York, 466.
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i

i(x) =M*(Xft*/v M,(X)WtI

Levels of Interaction Effect Vectors
Factors

a 2  al i 4  as
1 L41 149 .11 1071 1  402 - 8

2 16 J -• L1 1 1 J - iJ 6 616 1a,(1)

S a 4  a3 4  a4 S a

12 77 -1 1191 18 78 1 681 84 -1 63 1 al
21 T6 -1 16 116' -1 1.6 1] Th61l1 16 -1j 16 2(11-22 1 "1 1L "a, (1

a,, (11)
a1 23  a 1 25  a13 s a2 3 4  a 23 5  a 245  a34S a 2 3 (11)

a24 (11)
2 1a2 (11)112 -1 11 a 2 4(11
121 -1 1 -1 '1a 12 (11)

122 163 68 [4-
1  1 18 - 1]19 1 77[-1 a 3 4 

(11)

T63 123 a- - a a 13 (111)

S211 16 ,-.1 16 _1 6 _1
24212 1 2351 a,2 (111)

a114 (211)
"1121 a 111)

11222- 1 1 a,3 5 (111)

1212 -1•s 1Sal~ a214 a1 ,,s (1111)

1221 1 12 -1-24 a1245 (11)

1112 -1 4 -1 107 1 1 a23S (111)

21121 -1 1 -1 1 - 1  1a as J
" 21122 1 1 -1 - a341•+•1211 -1 I -1 1 • a,,,, (1111)

.,+ " a"3s (1111)
1212 1 1 -11 -1
21221 1 21245 (1111)1222 86 -1 I402 -1 107 1 149 -1 347 114 (1111

' 2112 1 I1 -1 R2.12 45 (11111)j

2121 1 -1i -
2122 -1 -1

2215 3 124 1 23 1 z e222 111-11 -1 1
( 2222 11-111

i a+ is •~s= •+ =•t+4=i+s= ,+,sare zero vectors

To be read 1 = a, (1) it (2)) 1-47-'1. - 1 21.7. - 21.7 jr 16
't M*(X) is formed by deleting columns (only) of M(X) associated with missing treatments.
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Constraint Matrix U': Dependency Relationships foumd from:

Formed so that U't = 0 yields: U't =U', a,(( ,))*.* (( 0

t 3 + t1 4 + t17 + t 3 2 = 0

ts + t9 + t7 2 + t 27 = 0

t5+1t2 +t•3 +t26 =0 a. 3'11)=0

t2 + tS + t2 + t 2 9 = 0 a25 (11) = 0

=t4 = t6 = t7 = t1 0 = 'II= t13 = t16 =0a 5 (1t =t •=t =t =t~o=• =t; =t•=~(1=

t18 = t19 = 21 = t24 = t25 = 28 t 3 0 = t3l = 0 a1 23 (111) = -a4 s (11)

Factors Confounded a, (111) = 0
Factors/Aliases With Blocks 12

a,.5 (111) = -a 34 (11)

a, (1) Als AAA 5 AA

a 2 (1) A2 AA A A4A A2 A a1 3 4 (111) = 0

a (1) A3  A1 A2A4 As A3 As a13 S (111) - -a 2 4 (11)

a 4(1) A4  A1 A2A3 As AA A4 aA (111) 0

as(1) As AjA2 A3 A4  AIA3 A4
a1 2 (11) A1A 2  A3A4A5 AIA 4 A5  a 2 . 4 (111) =-a,, (11\

a =a3 (11) AIA3 AAAi AAA12A34 As a235(111) -a1 4 (11)

a,, (11) AAs A2 A3 A4

a2 4 (11) A 2 A 4  AA 3AA 5 1 34S(111) -a 1 2 (11)

a34 (11) A3A4  A1 A2AS a 234 (1111) = -a(1)

a4 s (11) A4As A1 A2A3L a •23s (1111) 8 4(1)

a 245 (1111) = -a (1)

a •4•3 (1111) =-a (1)

a 2345(1111) = -a, (1)

as 234 , (11111) = 0
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Variance-Covariance Matrix

Var • (1)

l Var a2 (1)

a -1r -12
0 Var 534 (11)

Var a 4, (11)

Design is orthogonal.

}, 2.. ...12
Degrees of freedom for a (x,)o Rank • - ( )--

Analysis of Variance Table

Source of Variation Sams of Squares Degrees of Freedom

Al 30102.25 1

A2  5550.25 1

A3  2862.25 1

A 40401.00 1

A, 1849.00 1

A AA2 1482.25 1

A•A 3 3540.25 1

AIA 4  81.00 1

A1 As 1521.00 1

A 2A 4  1156.00 1

A3A4  1764.00 1

A4As 6642.25 1

Blocks 26554.25 3

Total 123505.75 15

SRows and columns of V associated with elements of a.
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EXAMPLE 3: A 3 x 2 x 2 FACTORIAL WITH UJNEQUAL NUMBER, ZELEN 7

Number of Factors (n) = 3 Number of Treatments (v) = 12

Factor (Ai )/Levels (mi) Number of Blocks (b) = 1

A 3

A 2 2

A3 2

Treatment Treatment Combination Generalized Vector of
Label (i1,i2,13) Incidence Matrix (L) Observatiors (Y)

1 11 1 1. 1 = 5

2 112 1 y21.•1 = 5

3 121 2 Y3. 1. 1 = 10

Y. =12

4 122 2y. 1.1 =13

y4,.2 = =17

5 211 1 s = 9

6 212 1 9.1

7 221 1 y7 .1 .1  7

8 222 2 =14

Y8.1.2 =16

9 311 31.1 =9

Y9.1.2 =13

Y9.1.3 = 8

10 312 1 Y10 , 1. 1 =10

11 321 1 Y11 .1. 1 =12

12 322 1 y12 . 1.1 = 12

R=dLag(1 1 2 2 1 1 1 2 3 1 1 1)

K = 17

Z = 1; Z 2 = 0

17 Zelen, M. (1964) Applications of the Calculus for Factorial Arrangements II: Unequal Numbers in the Analysis
of Variance, MRC Tech. Summary Report 411, U.S. Army Moth Res. Center, Univ. of Wisc.
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17 12 J2 -2J2 -J2x3 (-212: - 12) -J2K3

- 2J2 3412-432 -2J2K3 (-412: -612) -2J 2 -3

-J3x 2 -2 J3 2 17 13- J3 (- 213: - 313) "J3

C R-LK- L I 21j 412 -21' 30 -6 -21'

3 31
.-31•/ •l/- 31j/ - 6 42 - 31i/

-. "3 2 2 J3 2 -J3 (-213: - 313) 17 13- J3

S~C is not idempotent.

864 I2 - 85 J2 -49J2 85 J2, 3 (-4912: -3712) - 8512,3

iso t49 J2 432 - 13J2 J2(- 1312: - 12) -49J2- 3

_85 J3x2 _ 49 J312 864 3-851 3 (-4913: -3713) -85J3

S-85 43,2 - 1312 -8513 (-4913: -3713) 864I3-85J

P 1 (-96 -96 12 148 -28 -28 -62 148 -33 -11 23 23)

ank C = v - - =J11 degrees of freedom for treatments

•'• ~SS(t) =t' Q=163.882 11
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t"• Levels of

Factors Interaction Effect Vectors a(X) = M(X)t/v

a a2 a3

3 ~1 [-22"] 112 3
2 10 aJ [1)

a, (2)
a, 2  a 13  a 23  a 2 (1)

a3 (1)
12 _2 0 a12(11)

a 12(21)
1 a 13(11)

3a (21)
32 1 1  Ja2 11

123(
1123 (211

a123

112 0 a a

121 0

211 1
212 -1
221 -"
222 1
311 -1
312 

1
321 1
322 [-1
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113 -58 13 1 23 -22 -1 -10 7 -7 2

122 4 10 -22 14 -10 8 -2 2 -16I 59 -7 -5 4 7 -2 -1 1 10

59 7 -2 -5 4 5 13 4

113 -58 -7 2 1 -1 -10

1'a =t -~ 122 2 -16 10 -10 8•:, 864

113 -58 13 23 -22

122 4 -22 14

59 -5 4

113 -58

122

Design is not orthogonal.

1, 2 ..... 7

Degrees of freedom for a (x. Rank
'hi.

Analysis of Variance Table

Source of Variation Sums of Squares Degrees of Freedom

A1  10.114 2

A 2  58.576 1

A3  14.644 1

A AA 30.591 2

A1 A3  .9.368 2

SA 2A 3  14.644 1

•AA A 9.368 2

Error 26.000 5

Total 189.882 16

t Rows and columns of V associated with elements of i.
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